Prozess der integrativen Entscheidungsfindung (Kurzformat)

Es gibt verschiedene Formate für die Moderation von integrativer Entscheidungsfindung. Das folgende beschreibt den
„Kurzformat“-Prozess, der angewendet wird, wenn ein Mitglied des Kreises sowohl eine Spannung aufzulösen hat als
auch einen spezifischen Vorschlag anbieten kann als einen Ausgangspunkt für die Integration:
Vorstellung des Vorschlags: Der Vorschlagende nennt die aufzulösende Spannung und einen möglichen Vorschlag,
um diese zu addressieren. Klärungsfragen sind nur erlaubt zum Zwecke des Verständnisses dessen, was
vorgeschlagen wird. Diskussionen und Reaktionen werden vom Moderator [A.d.Ü: engl. ‚Facilitator’, für das es kein
passendes deutsches Äquivalent gibt] sofort abgeschnitten, insbesondere Reaktionen, die als Fragen getarnt sind
(z.B. „Meinst du nicht, dass uns das in Schwierigkeiten bringen wird?“)
Reaktions-Runde: Der Moderator fragt nacheinander jede Person nach einer schnellen Bauch-Reaktion in Bezug auf
den Vorschlag (z.B. „Klingt großartig“, „Ich mache mir wirklich Sorgen über X“, etc.) Diskussion oder Überkreuz-
Gespräche jeglicher Art werden vom Moderator rücksichtslos abgeschnitten – dies ist ein heiliger Raum für jede
Person, um ihre Reaktionen zu bemerken, mitzuteilen und sich von ihnen zu lösen, ohne um sich den möglichen Effekt
der Mitteilung sorgen zu müssen.
Verbessern oder Klären: Der Vorschlagende bekommt, nachdem er den Reaktionen zugehört hat, eine Gelegenheit
um jeglichen Aspekt seines Vorschlags, von dem er meint, dass er Klärung bedarf, zu klären oder den Vorschlag
basierend auf den Reaktionen in minimaler Weise zu verbessern (es sollten nur triviale Verbesserungen in dieser
Phase versucht werden, auch wenn bereits auf klare Mängel hingewiesen wurde). Diskussionen werden vom
Moderator abgeschnitten.
Einwands-Runde: Der Moderator fragt nacheinander jeder Person, ob sie irgendwelche Einwände gegen den
Vorschlag, so wie er formuliert wurde, sieht. Einwände werden kurz genannt ohne Diskussionen oder Fragen; der
Moderator listet alle Einwände auf der Tafel auf und schneidet jegliche Art von Diskussion in dieser Phase ab. Wenn
die Einwands-Runde ohne sich zeigende Einwände ausgeht ist die Entscheidung gefunden und der Prozess endet.
Integration: Wenn Einwände auftauchen, tritt die Gruppen am Ende der Einwandsrunde in einen offen Dialog ein, um
die Kernwahrheit jedes Einwands in einen verbesserten Vorschlag zu integrieren. Sobald sich ein verbesserter
Vorschlag zeigt, der funktionieren könnte, unterbricht der Moderator das Gespräch, nennt den verbesserten Vorschlag
und geht zurück zu einer Einwands-Runde.



Prozess der integrativen Entscheidungsfindung (Kurzformat)

Effort Estimation Techniques

My starting point for agile estimation was the book “Aufwandschätzung bei Softwareprojekten”, Steve McConnell, 2006, Microsoft Press, However, at the end I found the classification by Boehm (Barry W. Boehm, Software Engineering Economics, Englewood Cliffs, NJ : Prentice-Hall, 1981).

In my blog I’ll follow the classification of estimation methods from Boehm 1981 (Barry W. Boehm, Software Engineering Economics, Englewood Cliffs, NJ : Prentice-Hall, 1981):

  • Algorithmic cost modeling
    • Parametric Models (e.g. COCOMO)
    • Function Points / Lines of Code
    • Proxy Based
    • Process Simulation
  • Estimation by analogy
    • StoryPoints
    • T-Shirt Sizes
  • Expert judgment
    • Single experts
    • Group of experts (Wideband Delphi, Planning Poker)
  • Variances and subsidiary techniques
    • Top-down / Bottom-up estimation
    • Combinations of techniques
    • PERT / Fuzzy estimation
    • Parkinson’s Law


Let’s start with some definitions:

An estimation is an approximation based on input data that may be incomplete or uncertain (Dictionary, Wikipedia).

If the estimation is given as a single value (“one-point-estimation”), it’s assumed that there is a 50% probability that the real value is higher, 50% that it is lower than estimated.

It is more accurate to provide an estimation range, with a min, max, and confidence intervals. However this requires more mathematics.

Note: An estimate is different from a project plan: The project plan is designed to hit a target that is a statement of a desirable business objective. A commitment is a promise to hit the target.

Analysis is the act of breaking something into parts to get a better understanding of it.

Law of Large Numbers (LLN) The average of the results obtained from a large number of trials is close to the expected value. Therefore you gain more accuracy, if you involve a group of experts rather than one expert.

Economy of scale Refers to the cost advantages that an enterprise obtains due to expansion.

Diseconomy of Scale Estimation of smaller projects / demands do not scale to bigger projects / demands, due to e.g. communication/management costs, duplication of effort

Closer to the end of a project, uncertainty becomes smaller. This can be visualized as a “cone of uncertainty” – e.g. look at

Now I’ll present an overview of the estimation methods:

One big class of estimation techniques are algorithmic methods: Algorithmic methods use mathematical relations/formulas for the estimation. The formulas are based on research and historical data and use inputs such as Lines of Code (LOC), number of functions to perform, Defects, … you get from analysis. The advantage of these methods is that they are very precise and easy to apply. The limiting factor is the availability of the input data. Also they are unable to handle exceptional conditions, input data might not be available or of poor quality.

Also (dynamic) process simulations are algorithmic methods: They use a dynamic model with assumptions about the project and organization, e.g. their velocities and error rates (need to be calibrated with real data).

Another class of estimation techniques is estimation by analogy: They compare new tasks / project with other tasks / projects already known to derive the estimated effort from historical data. One needs to find areas that can be counted (e.g. number of tables, screens, use cases etc.). Best known techniques areStoryPoints and T-Shirt Sizes:


  • Assign numbers to the categories that are related to the complexity
  • Typical categories are
  • Powers of 2:  1, 2, 4, 8, 16,…
  • Fibonacci: 1, 2, 3, 5, 8, 13, …
  • Story points are relative to a defined anchor, to compare to

T-Shirt Size (S, M, L, XL, …)

  • Generalize the story point categories (maybe “8” story points do not exactly relate to twice the effort of “4”, e.g. due to diseconomy of scale
  • The average size of a category is determined by historical data

The comparison is usually done by expert judgment: The judgment can relay on individual experts: developers, architects, etc. who are asked about the expected effort (one-point estimation) or ranges (min / max) or clusters. It can also rely on a group of experts – e.g. done in the planning Poker (Scrum poker) or poker party.

Last but not least there is the not so seriously meant estimation techniques, the Parkinson’s Law: “Work expands so as to fill the time available for its completion” (Cyril Northcote Parkinson, published in The Economist in 1955). Therefore, the cost is determined by available resources rather than by objective assessment. The estimated effort depends on the customer’s budget and not on the software functionality – e.g. If the software has to be delivered in 12 months and 5 people are available, the effort required is estimated to be 60 person-months.

For more variants of the Parkinson’s law see Wikipedia

Last but not least I’ll provide some variances and subsidiary techniques

Top-down approach

Split Requirements (Epics) into smaller elements (Stories) and assign some relative measure like story points, percentages. Split some (at least one) element further until you can achieve some good estimation

Bottom-up Judgment:

Break down into tasks and ask experts (developers, architects, etc.) about the expected effort

Best results, if tasks < 2d (otherwise details will be overseen)

Sum up to get the total effort. This yields to highly accurate estimated due to the Law of Large Numbers:

Fuzzy Effort Estimation

Fuzzy Numbers represent the physical world more realistically than single valued numbers (“Optimization Criteria for Effort Estimation using Fuzzy Technique”, Harish Mittal/ Pradeep Bhatia, 2007, CLEI ELECTRONIC JOURNAL,

Some further reading I suggest: “The Comparison of the Software Cost Estimating Methods” by Liming Wu (


Effort Estimation Techniques

My personal introduction to Scrum

When you are completely new in Scrum, it’s a good idea to read an introductory book or browse through Wikipedia. When you’ve learned about the Scrum roles and artifacts, it’s also a good idea just to start with what you’ve just learned. My experience was that the really interesting questions only arise when you actually do Scrum. I’ve done the same and like to share my three Scrum lessons with you:

Implement a process for continuous improvements. Scrum does this trick by strictly “time boxing”: Define some fixed repeating time frame and call it “sprint”. If you run into delay or failure, do not expand the sprint length. After the fixed time period, ask yourself what you’ve achieved and think about how to become better next time. Think about how you can measure your progress. The Scrum artifact for measurement is the burn down chart. If you’re a manager, do not look on it as a new fancy tool to control your team. It’s rather tool for the team to measure their progress and become transparent in what they’re achieving every day. Derive a target what you want to achieve in the next sprint. Find a person who’s responsible that the Scrum rules are obeyed, and call him Scrum master. He/she should do his/her job once a day in the daily Scrum, and you’ve done your first Scrum lesson.

Second lesson is to achieve a team’s commitment. In classical project management there is some project manager who’s going to plan the project. This requires making assumptions about uncertain information and forecasting the team activities. Who is the most able to do this? It’s the team who’s most able to do the detailed planning. Again “time boxing” will do the trick: The sprint length should be small enough that the forecast becomes more certain and the team becomes confident in their plan. If the team becomes committed to the sprint target, you’ve done your second Scrum lesson.

The third lesson is to introduce a Product backlog. The product backlog is an ordered list of all requirements – both functional and technical. Call these entries “stories”. Find the Product owner who owns the product backlog, i.e. has the authority to decide on the stories. At every sprint start, the team selects the top stories from the backlog, plans activities and chooses which part they can commit. This is called “pull principle”. The team should do the decisions late, such that the product owner can decide to rearrange the product backlog as long as possible. This makes the Scrum agile and completes the final lesson.

My personal introduction to Scrum